Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511

نویسندگان

  • Guadalupe Gómez-Baena
  • María Agustina Domínguez-Martín
  • Robert P. Donaldson
  • José Manuel García-Fernández
  • Jesús Diez
  • Franck Chauvat
چکیده

Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo regulation of glutamine synthetase activity in the marine chlorophyll b-containing cyanobacterium Prochlorococcus sp. strain PCC 9511 (oxyphotobacteria).

The physiological regulation of glutamine synthetase (GS; EC 6.3.1.2) in the axenic Prochlorococcus sp. strain PCC 9511 was studied. GS activity and antigen concentration were measured using the transferase and biosynthetic assays and the electroimmunoassay, respectively. GS activity decreased when cells were subjected to nitrogen starvation or cultured with oxidized nitrogen sources, which pro...

متن کامل

Glutamine synthetase from the marine cyanobacteria Prochlorococcus spp: characterization, phylogeny and response to nutrient limitation.

The regulation of glutamine synthetase (EC 6.3.1.2) from Prochlorococcus was previously shown to exhibit unusual features: it is not upregulated by nitrogen starvation and it is not inactivated by darkness (El Alaoui et al. (2001) Appl Environ Microbiol 67: 2202-2207). These are probably caused by adaptations to oligotrophic environments, as confirmed in this work by the marked decrease in the ...

متن کامل

Correction: Physiological Regulation of Isocitrate Dehydrogenase and the Role of 2-Oxoglutarate in Prochlorococcus sp. Strain PCC 9511

The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42) catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. ...

متن کامل

Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll a2/b2-containing cyanobacterium (Oxyphotobacteria).

The formal description of Prochlorococcus marinus Chisholm et al. 1992, 299 was based on the non-axenic nomenclatural type, strain CCMP 1375T. The purification and properties of the axenic strain PCC 9511, derived from the same primary culture (SARG) as the type species, are reported here. Prochlorococcus PCC 9511 differs from the latter in possessing horseshoe-shaped thylakoids, exhibiting a l...

متن کامل

Prochlorococcus marinus strain PCC 9511, a picoplanktonic cyanobacterium, synthesizes the smallest urease.

The urease from the picoplanktonic oceanic Prochlorococcus marinus sp. strain PCC 9511 was purified 900-fold to a specific activity of 94.6 micromol urea min(-1) (mg protein)(-1) by heat treatment and liquid chromatography methods. The enzyme, with a molecular mass of 168 kDa as determined by gel filtration, is the smallest urease known to date. Three different subunits with apparent molecular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015